Template Attacks in Principal Subspaces

Cédric Archambeau, **Eric Peeters**, François-Xavier Standaert and Jean-Jacques Quisquater

UCL Crypto Group, Université catholique de Louvain - CHES 2006, Yokohama, Japan -

Outline

- Principle of template attacks
- Open issues in template attacks
- PCA in high dimensional space
- PSTA
- Results on RC4
- Results on AES
- Conclusions

Representation of side-channel information: univariate vs. multivariate approach

⇒ Most powerful adversary:
1. Take all relevant samples
2. and build a multivariate statistical model

Example: template attacks

[Chari et al., 2002]

$$\mathbf{P}(t|s_k) = \mathcal{N}(t|m, S) = \frac{1}{(2\pi)^{N/2} |S|^{1/2}} \exp\left\{-\frac{1}{2}(t-m)^{\mathsf{T}} S^{-1}(t-m)\right\}$$

Attack on new device

$$\hat{s}_k = \underset{s_k}{\operatorname{argmax}} \mathbf{P}(t_{new}|s_k) \mathbf{P}(s_k)$$

Profiling phase

Any leakage: power, electromagnetic...

Attack phase

UCL Crypto Group Microelectronics Laboratory

Open issues

1. How to select the relevant samples?

- Look for the largest differences between the mean traces. [Chari et al. 2002, Rechberger et al. 2004]
- Look for the largest cumulative differences.
- Look for the samples with maximal variance.
- 2. How to select window size?
 - Clock cycle?

3. How many samples are needed to attack?

A trace ~ 10⁵ samples

- Prohibitive memory usage!
- Automated way to reduce trace's size?
- **Hypothesis:**
 - **Information relies on amplitude of leakage signal (e.g. HW, HD models)**
- Focus on instants where signal variability is maximal!
- → 1 candidate: Principal Component Analysis

Principal Component Analysis

1. Rotate axes.

2. Discard irrelevant dimensions.

Find subspace that preserves maximal data variance!

Ordinary PCA

- Rotation matrix
 - Compute sample mean and covariance matrix
 - Diagonalize sample
 covariance matrix
 (by eigendecomposition)

$$m = \frac{1}{K} \sum_{k=1}^{K} t_k$$

$$S = \frac{1}{K} \sum_{k=1}^{K} (t_k - m) (t_k - m)^{\mathsf{T}}$$

 $S\mathbf{V} = \mathbf{V}\mathbf{\Lambda}$ where $\mathbf{V}^{\top}\mathbf{V} = \mathbf{I}_K$

• Keep M eigenvectors corresponding to M largest eigenvalues Principal directions Variance in each direction

PCA in high dimensional data

• Practical limitations of PCA:

 The complexity of an eigendecomposition is $O(N^3)$

$$- K \ll N$$

- How to find the *K*-1 first principal directions?
 - Eigendecomposition $\left(\frac{1}{K}\boldsymbol{T}_{c}^{\mathsf{T}}\boldsymbol{T}_{c}\right)\boldsymbol{U} = \boldsymbol{U}\boldsymbol{\Lambda} \quad \boldsymbol{T}_{c} \in \mathcal{R}^{K \times N}$ Covariance matrix $\left(\frac{1}{K}\boldsymbol{T}_{c}\boldsymbol{T}_{c}^{\mathsf{T}}\right)$

 - Left-multiplying by T_c gives $S(T_c U) = (T_c U) \Lambda$
 - Eigenvectors normalized $V = \frac{1}{V} (T_c U) \Lambda^{1/2}$

Principal Subspace Template Attacks

• Keep principal directions: M eigenvectors

$$\boldsymbol{V}_{1:M} = \frac{1}{\sqrt{K}} \left(\boldsymbol{T}_{c} \boldsymbol{U}_{1:M} \right) \boldsymbol{\Lambda}_{1:M}^{1/2}$$

• Parameters of multivariate Gaussian noise model:

$$\begin{split} \mathbf{P} \left(\boldsymbol{V}_{1:M}^{\mathsf{T}} \boldsymbol{t} | \boldsymbol{s}_k \right) &= \mathcal{N} \left(\boldsymbol{V}_{1:M}^{\mathsf{T}} \boldsymbol{t} | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k \right) \\ \textbf{where} \quad \boldsymbol{\mu}_k \quad = \quad \boldsymbol{V}_{1:M}^{\mathsf{T}} \boldsymbol{m}_k \\ \boldsymbol{\Sigma}_k \quad = \quad \boldsymbol{V}_{1:M}^{\mathsf{T}} \boldsymbol{S}_k \boldsymbol{V}_{1:M} \end{split}$$

• Attack in subspace:

$$\hat{s}_k = \underset{s_k}{\operatorname{argmax}} \mathbf{P}\left(\mathbf{V}_{1:M}^{\mathsf{T}} \mathbf{t}_{new} | s_k\right) \mathbf{P}(s_k)$$

Results on RC4: ATmega88

Linear transformation in each direction = weighted sum

Classification of 10 keys

1st and 2nd directions

2nd and 3rd directions

Classification rate: 99 % with 3 components

Results on AES Rijndael

FPGA implementation on Spartan II

Each key candidate = \neq paths

More directions needed

UCL Crypto Group Microelectronics Laboratory

Classification rate

20 components and 128 encrypted messages: 86.7% on average (vs. Previous attack's results: 500→ 2000 encr. mess.)

UCL Crypto Group Microelectronics Laboratory

Conclusions

- PCA-based TA
 principled approach for TA
- Relevant info → in a very few features (compression) automatically selected
- Maximal variance criterion → Starting hypothesis
- Succesfully applied to RC4 and AES
- Future work:
 - Optimal number of components and encrypted messages in case of the AES?
 - Behavior when noise process is important (or non-Gaussian)?

Questions?

UCL Crypto Group Microelectronics Laboratory

How many principal directions?

